Comparison of AdaBoost and Genetic Programming for Combining Neural Networks for Drug Discovery

نویسندگان

  • William B. Langdon
  • S. J. Barrett
  • Bernard F. Buxton
چکیده

Genetic programming (GP) based data fusion and AdaBoost can both improve in vitro prediction of Cytochrome P450 activity by combining artificial neural networks (ANN). Pharmaceutical drug design data provided by high throughput screening (HTS) is used to train many base ANN classifiers. In data mining (KDD) we must avoid over fitting. The ensembles do extrapolate from the training data to other unseen molecules. I.e. they predict inhibition of a P450 enzyme by compounds unlike the chemicals used to train them. Thus the models might provide in silico screens of virtual chemicals as well as physical ones from Glaxo SmithKline (GSK)’s cheminformatics database. The receiver operating characteristics (ROC) of boosted and evolved ensemble are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...

متن کامل

Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction

No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...

متن کامل

Genetic Programming for Combining Neural Networks for Drug Discovery

We have previously shown on a range of benchmarks [Langdon and Buxton, 2001b] genetic programming (GP) can automatically fuse given classifiers of diverse types to produce a combined classifier whose Receiver Operating Characteristics (ROC) are better than [Scott et al., 1998]’s “Maximum Realisable Receiver Operating Characteristics” (MRROC). I.e. better than their convex hull. Here our techniq...

متن کامل

Comparing Prediction Power of Artificial Neural Networks Compound Models in Predicting Credit Default Swap Prices through Black–Scholes–Merton Model

Default risk is one of the most important types of risks, and credit default swap (CDS) is one of the most effective financial instruments to cover such risks. The lack of these instruments may reduce investment attraction, particularly for international investors, and impose potential losses on the economy of the countries lacking such financial instruments, among them, Iran. After the 2007 fi...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003